Sparse and Non-Negative BSS for Noisy Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Regularizations and Non-negativity in BSS

We investigate the use of sparse priors to regularize nonnegative blind source separation (BSS) problems. Dealing with the nonnegativity constraint in the direct/sample domain, and at the same time sparsity in some other signal representation, raises algorithmic issues. We show how such sparse non-negative BSS problems can be tackled with the help of proximal splitting methods. We present a pre...

متن کامل

Estimation of Sparse Non-negative Sources from Noisy Overcomplete

In this paper, a new algorithm for estimating sparse non-negative sources from a set of noisy linear mixtures is proposed. In particular, difficult situations with high noise levels and more sources than sensors (underdetermined case) are considered. It is shown that, when sources are very sparse in time and overlapped at some locations, they can be recovered even with very low SNR and by using...

متن کامل

Non-negative sparse coding

Non-negative sparse coding is a method for decomposing multivariate data into non-negative sparse components. In this paper we briefly describe the motivation behind this type of data representation and its relation to standard sparse coding and non-negative matrix factorization. We then give a simple yet efficient multiplicative algorithm for finding the optimal values of the hidden components...

متن کامل

Robust Sparse Representation for Incomplete and Noisy Data

Owing to the robustness of large sparse corruptions and the discrimination of class labels, sparse signal representation has been one of the most advanced techniques in the fields of pattern classification, computer vision, machine learning and so on. This paper investigates the problem of robust face classification when a test sample has missing values. Firstly, we propose a classification met...

متن کامل

Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis

MOTIVATION Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approx...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2013

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2013.2279358